Part Number Hot Search : 
X9312 BD8960NV CLAMP CAT24 7S64TCJ EC001024 74LV573 H8S2695
Product Description
Full Text Search
 

To Download APT77H60J Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  s o t - 2 2 7 is oto p ? file # e145592 "ul recognized" g s s d absolute maximum ratings thermal and mechanical characteristics g d s unit a v mj a unit w c/w c v oz g inlbf nm ratings 77 48 445 30 3350 60 min typ max 960 0.13 0.15 -55 150 2500 1.03 29.2 10 1.1 parameter continuous drain current @ t c = 25c continuous drain current @ t c = 100c pulsed drain current 1 gate-source voltage single pulse avalanche energy 2 avalanche current, repetitive or non-repetitive characteristic total power dissipation @ t c = 25c junction to case thermal resistance case to sink thermal resistance, flat, greased surface operating and storage junction temperature range rms voltage (50-60hhz sinusoidal waveform from terminals to mounting base for 1 min.) package weight terminals and mounting screws. symbol i d i dm v gs e as i ar symbol p d r jc r cs t j ,t stg v isolation w t torque typical applications ? zvs phase shifted and other full bridge ? half bridge ? ups ? welding ? solar inverters ? telecom recti?ers features ? fast switching with low emi ? very low t rr for maximum reliability ? ultra low c rss for improved noise immunity ? low gate charge ? avalanche energy rated ? rohs compliant APT77H60J APT77H60J 600v, 77a, 0.065? max, t rr 300ns n-channel ultrafast recovery fredfet power mos 8 ? is a high speed, high voltage n-channel switch-mode power mosfet. this 'fredfet' version has a drain-source (body) diode that has been optimized for maximum reliability in zvs phase shifted bridge and other circuits through much reduced t rr , soft recovery, and high recovery dv/dt capability. low gate charge, high gain, and a greatly reduced ratio of c rss /c iss result in excellent noise immunity and low switching loss. the intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low emi and reliable paralleling, even when switching at very high frequency. microsemi website - http://www.microsemi.com 050-8152 rev a 6-2007 single die fredfet
static characteristics t j = 25c unless otherwise speci?ed source-drain diode characteristics dynamic characteristics t j = 25c unless otherwise speci?ed 1 repetitive rating: pulse width and case temperature limited by maximum junction temperature. 2 starting at t j = 25c, l = 1.86mh, r g = 2.2?, i as = 60a. 3 pulse test: pulse width < 380s, duty cycle < 2%. 4 c o(cr) is de?ned as a ?xed capacitance with the same stored charge as c oss with v ds = 67% of v (br)dss . 5 c o(er) is de?ned as a ?xed capacitance with the same stored energy as c oss with v ds = 67% of v (br)dss . to calculate c o(er) for any value of v ds less than v (br)dss, use this equation: c o(er) = -2.32e-7/v ds ^2 + 9.75e-8/v ds + 3.64e-10. 6 r g is external gate resistance, not including internal gate resistance or gate driver impedance. (mic4452) microsemi reserves the right to change, without notice, the speci? cations and information contained herein. g d s unit v v/c ? v mv/c a na unit s pf nc ns unit a v ns c a v/ns min typ max 600 0 .57 0.050 0.065 3 4 5 -10 100 1000 100 min typ max 115 24000 245 2200 1170 605 600 130 250 135 155 410 125 min typ max 77 445 1.0 260 300 460 550 2.08 5.54 11.6 17.8 30 test conditions v gs = 0v , i d = 250a reference to 25c, i d = 250a v gs = 10v , i d = 60a v gs = v ds , i d = 5ma v ds = 600v t j = 25c v gs = 0v t j = 125c v gs = 30v test conditions v ds = 50v , i d = 60a v gs = 0v , v ds = 25v f = 1mhz v gs = 0v , v ds = 0v to 400v v gs = 0 to 10v , i d = 60a, v ds = 300v resistive switching v dd = 400v , i d = 60a r g = 2.2? 6 , v gg = 15v test conditions mosfet symbol showing the integral reverse p-n junction diode (body diode) i sd = 60a , t j = 25c, v gs = 0v t j = 25c t j = 125c i sd = 60a 3 t j = 25c di sd / dt = 100a/s t j = 125c v dd = 100v t j = 25c t j = 125c i sd 60a, di/dt 1000a/s, v dd = 400v, t j = 125c parameter drain-source breakdown voltage breakdown voltage temperature coef? cient drain-source on resistance 3 gate-source threshold voltage threshold voltage temperature coef?cient zero gate voltage drain current gate-source leakage current parameter forward transconductance input capacitance reverse transfer capacitance output capacitance effective output capacitance, charge related effective output capacitance, energy related total gate charge gate-source charge gate-drain charge turn-on delay time current rise time turn-off delay time current fall time parameter continuous source current (body diode) pulsed source current (body diode) 1 diode forward voltage reverse recovery time reverse recovery charge reverse recovery current peak recovery dv/dt symbol v br(dss) ?v br(dss) /?t j r ds(on) v gs(th) ?v gs(th) /?t j i dss i gss symbol g fs c iss c rss c oss c o(cr) 4 c o(er) 5 q g q gs q gd t d(on) t r t d(off) t f symbol i s i sm v sd t rr q rr i rrm dv/dt 050-8152 rev a 6-2007 APT77H60J
v gs = 7&8v 4.5v t j = 125c t j = 25c t j = -55c v gs = 10v 5.5v 6v 5v v ds > i d(on) x r ds(on) max. 250sec. pulse test @ <0.5 % duty cycle normalized to v gs = 10v @ 60a t j = 125c t j = 25c t j = -55c c oss c iss i d = 60a v ds = 480v v ds = 120v v ds = 300v t j = 125c t j = 25c t j = -55c t j = 150c t j = 25c t j = 125c t j = 150c c rss v gs , gate-to-source voltage (v) g fs , transconductance r ds(on) , drain-to-source on resistance i d , drain current (a) i sd, reverse drain current (a) c, capacitance (pf) i d , drain current (a) i d , drian current (a) v ds(on) , drain-to-source voltage (v) v ds , drain-to-source voltage (v) figure 1, output characteristics figure 2, output characteristics t j , junction temperature (c) v gs , gate-to-source voltage (v) figure 3, r ds(on) vs junction temperature figure 4, transfer characteristics i d , drain current (a) v ds , drain-to-source voltage (v) figure 5, gain vs drain current figure 6, capacitance vs drain-to-source voltage q g , total gate charge (nc) v sd , source-to-drain voltage (v) figure 7, gate charge vs gate-to-source voltage figure 8, reverse drain current vs source-to-drain voltage 0 5 10 15 20 25 30 0 5 10 15 20 25 30 -55 -25 0 25 50 75 100 125 150 0 1 2 3 4 5 6 7 8 0 20 40 60 80 100 120 140 160 0 100 200 300 400 500 600 0 100 200 300 400 500 600 700 800 900 0 0.3 0.6 0.9 1.2 1.5 400 350 300 250 200 150 100 50 0 3.0 2.5 2.0 1.5 1.0 0.5 0 250 200 150 100 50 0 16 14 12 10 8 6 4 2 0 180 160 140 120 100 80 60 40 20 0 450 400 350 300 250 200 150 100 50 0 30,000 10,000 1000 100 10 450 400 350 300 250 200 150 100 50 0 APT77H60J 050-8152 rev a 6-2007
31.5 (1.240) 31.7 (1.248) dimensions in millimeters and (inches) 7.8 (.307) 8.2 (.322) 30.1 (1.185) 30.3 (1.193) 38.0 (1.496) 38.2 (1.504) 14.9 (.587) 15.1 (.594) 11.8 (.463) 12.2 (.480) 8.9 (.350) 9.6 (.378) hex nut m 4 (4 places ) 0.75 (.030) 0.85 (.033) 12.6 (.496) 12.8 (.504) 25.2 (0.992) 25.4 (1.000) 1.95 (.077) 2.14 (.084) * source drai n gate * r = 4.0 (.157) (2 places) 4.0 (.157) 4.2 (.165) (2 places) w=4.1 (.161) w=4.3 (.169) h=4.8 (.187) h=4.9 (.193) (4 places) 3.3 (.129) 3.6 (.143) * source emitter terminals are shorte d internally. current handlin g capability is equal for either source terminal . sot-227 (isotop ? ) package outline isotop ? is a registered trademark of st microelectronics nv. microsemi's products are covered by one or more of u.s.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. us and foreign patents pending. all rights reserved. 0.0305 0.100 0.0830 1.07 dissipated powe r (watts ) t j (c) t c (c) z ext are the external therma l impedances: case to sink, sink to ambient, etc. set to zero when modeling onl y the case to junction. z ext 1ms 100ms r ds(on) scaling for different case & junction temperatures: i d = i d(t c = 25 c) *( t j - t c )/125 dc line 100s i dm 10ms 13s 100s i dm 100ms 10ms 13s r ds(on) dc line t j = 150c t c = 25c 1ms t j = 125c t c = 75c 0.5 single pulse 0.1 0.3 0.7 0.05 d = 0.9 peak t j = p dm x z jc + t c duty factor d = t 1 / t 2 t 2 t 1 p dm note : t 1 = pulse duration i d , drain current (a) v ds , drain-to-source voltage (v) v ds , drain-to-source voltage (v) figure 9, forward safe operating area figure 10, maximum forward safe operating area z jc , thermal impedance (c/w) 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 rectangular pulse duration (seconds) figure 12. maximum effective transient thermal impedance junction-to-case vs pulse duration i d , drain current (a) figure 11, transient thermal impedance model 1 10 100 800 1 10 100 800 600 100 10 1 0.1 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0 600 100 10 1 0.1 APT77H60J 050-8152 rev a 6-2007


▲Up To Search▲   

 
Price & Availability of APT77H60J

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X